Much of the past and current focus of bioremediation has been on laboratory studies of microbial processes. By necessity, early studies have ignored important field properties, parameters, and processes that control the ultimate success of in situ bioremediation of contaminated groundwater. This paper presents a bioengineering systems approach that examines the impact of some of these field variables on common bioremediation practices. Using simple systems, the niche of biostimulation is shown to be aquifers with high contaminant sorption. A novel gas-phase biostimulation filter and a novel resting-state bioaugmentation/biofilter approach which show promise for effective field implementation are discussed.