The dopamine (DA) neurons projecting to the prefrontal cortex (PFC) are thought to be involved in working memory, stress response, and the pathogenesis of schizophrenia. In this commentary, we review the current evidence supporting a precursor tyrosine dependence of these mesoprefrondal DN neurons. Several studies in rats employing different experimental paradigms [i.e. experimental diabetes and early-treated phenylketonuria (PKU) model] have shown that reduced tyrosine levels in brain can affect markedly the physiology and functions of these DA neurons. However, supplemental tyrosine is effective in enhancing functional transmitter outflow from mesoprefrontal DA neurons only under conditions where their physiological activity is enhanced and DA synthesis and release are uncoupled from intrinsic regulatory controls. Recent studies in humans have also suggested that variations in brain tyrosine levels can affect significantly higher cortical functions subserved by the PFC. In early-treated PKU patients with mildly reduced tyrosine levels, marked impairments in cognitive functions dependent on the dorsolateral PFC could be detected. In drug-treated schizophrenic patients, supplemental tyrosine was shown to have a disruptive effects on the smooth-pursuit eye movement performance task. Furthermore, tyrosine administration was effective in restoring impaired working memory in humans following cold stress paradigm, as assessed by a computer-based delayed matching to-sample memory task. These human studies, together with the current evidence obtained from animal experiments, suggest that the functions of the mesoprefrontal DA neurons can, under certain circumstances, be readily influenced by the availability of the precursor tyrosine.