Cardiac myocyte survival is of central importance in the maintenance of the function of heart, as well as in the development of a variety of cardiac diseases. To understand the molecular mechanisms that govern this function, we characterized apoptosis in cardiac muscle cells following serum deprivation. Cardiotrophin 1 (CT-1), a potent cardiac survival factor (Sheng, Z., Pennica, D., Wood, W. I., and Chien, K. R. (1996) Development (Camb.) 122, 419-428), is capable of inhibiting apoptosis in cardiac myocytes. To explore the potential downstream pathways that might be responsible for this effect, we documented that CT-1 activated both signal transducer and activator of transcription 3 (STAT3)- and mitogen-activated protein (MAP) kinase-dependent pathways. The transfection of a MAP kinase kinase 1 (MEK1) dominant negative mutant cDNA into myocardial cells blocked the antiapoptotic effects of CT-1, indicating a requirement of the MAP kinase pathway for the survival effect of CT-1. A MEK-specific inhibitor (PD098059) (Dudley, D. T., Pang, L., Decker, S.-J., Bridges, A. J., and Saltiel, A. R. (1995) Proc. Natl. Acad. Sci. USA 92, 7686-7689) is capable of blocking the activation of MAP kinase, as well as the survival effect of CT-1. In contrast, this inhibitor did not block the activation of STAT3, nor did it have any effect on the hypertrophic response elicited following stimulation of CT-1. Therefore, CT-1 promotes cardiac myocyte survival via the activation of an antiapoptotic signaling pathway that requires MAP kinases, whereas the hypertrophy induced by CT-1 may be mediated by alternative pathways, e.g. Janus kinase/STAT or MEK kinase/c-Jun NH2-terminal protein kinase.