Drug resistance often results in failure of anticancer chemotherapy in leukemias. Several mechanisms of drug resistance are known with multidrug resistance (MDR) being the best characterized one. MDR can be due to enhanced expression of certain genes (MDR1, MRP or LRP), alterations in glutathione-S-transferase activity or GSH levels and to reduction of the amount or the activity of topoisomerase II. Here we review the current status of the clinical significance of the various mechanisms of MDR in leukemias and also discuss possibilities for the reversal of MDR. MDR1 gene expression has been seen in many leukemias, notably in acute myeloid leukemia (AML) and blast crisis of chronic myeloid leukemia. Both MDR1 RNA and P-glycoprotein expression of the leukemic cells have been shown to correlate with poor clinical outcome in AML. However, preliminary results indicate that the MRP gene as well as the LRP gene can be expressed in AML. Thus, drug resistance in leukemias appears to be multifactorial. P-glycoprotein-mediated MDR can be reversed by several drugs. These resistance modifiers are currently evaluated with regard to their clinical efficacy. Despite some encouraging results, reversal of drug resistance and subsequent improvement in clinical outcome remains to be shown.