The experiments described herein tested the effects of CaCl2 and ZnCl2, added at various concentrations in the culture medium, upon the synthesis of collagen and proteoglycan by adult and fetal (articular, epiphyseal and hypertrophic) bovine chondrocytes maintained in high density multilayer cultures. CaCl2 concentrations below 0.5 mM or the addition of 1-50 microM ZnCl2 to the medium selectively promoted the production of collagen by all four populations of chondrocytes but had no effect on fibroblasts. Further, these changes had no statistically significant effect on the incorporation of 35S-sulfate into macromolecules or on the synthesis of gelatinase A, measured by gelatin zymography. The addition of CaCl2 and ZnCl2 at these concentrations did not result in a change in the relative proportion of non-crosslinked 3H-collagen molecules (synthesized in the presence of beta-aminopropionitrile) partitioning in the cell layer and medium compartments, and did not appreciably alter the pattern of collagens synthesized by any of the cell populations. The hypertrophic cells synthesized high levels of collagen type X in the presence as well as absence of exogenously added cations. However, CaCl2 at 10 mM caused a marked upregulation of collagen type X synthesis by a preparation of chondrocytes derived from the entire growth plate, consistent with the view that calcium at that concentration stimulated the differentiation of some of the cells into hypertrophic chondrocytes.