Using immunofluorescence and in situ hybridization techniques, we studied the intracellular localization of adeno-associated virus type 2 (AAV-2) Rep proteins, VP proteins, and DNA during the course of an AAV-2/adenovirus type 2 coinfection. In an early stage, the Rep proteins showed a punctate distribution pattern over the nuclei of infected cells, reminiscent of replication foci. At this stage, no capsid proteins were detectable. At later stages, the Rep proteins were distributed more homogeneously over the nuclear interior and finally became redistributed into clusters slightly enriched at the nuclear periphery. During an intermediate stage, they also appeared at an interior part of the nucleolus for a short period, whereas most of the time the nucleoli were Rep negative. AAV-2 DNA colocalized with the Rep proteins. All three capsid proteins were strongly enriched in the nucleolus in a transient stage of infection, when the Rep proteins homogeneously filled the nucleoplasm. Thereafter, they became distributed over the whole nucleus and colocalized in nucleoplasmic clusters with the Rep proteins and AAV-2 DNA. While VP1 and VP2 strongly accumulated in the nucleus, VP3 was almost equally distributed between the nucleus and cytoplasm. Capsids, visualized by a conformation-specific antibody, were first detectable in the nucleoli and then spread over the whole nucleoplasm. This suggests that nucleolar components are involved in initiation of capsid assembly whereas DNA packaging occurs in the nucleoplasm. Expression of a transfected full-length AAV-2 genome followed by adenovirus infection showed all stages of an AAV-2/adenovirus coinfection, whereas after expression of the cap gene alone, capsids were restricted to the nucleoli and did not follow the nuclear redistribution observed in the presence of the whole AAV-2 genome. Coexpression of Rep proteins released the restriction of capsids to the nucleolus, suggesting that the Rep proteins are involved in nuclear redistribution of AAV capsids during viral infection. Capsid formation was dependent on the concentration of expressed capsid protein.