Polypeptide translocation machinery of the yeast endoplasmic reticulum

Experientia. 1996 Dec 15;52(12):1042-9. doi: 10.1007/BF01952100.

Abstract

Proteins enter the secretory pathway by two general routes. In one, the complete polypeptide is made in the cytoplasm and held in an incompletely folded state by chaperoning adenosine triphosphatases (ATPases) such as hsp70. In Saccharomyces cerevisiae, fully synthesized secretory precursors engage the endoplasmic reticulum (ER) membrane by interaction with a set of Sec proteins comprising the polypeptide translocation apparatus (Sec61p, Sec62p, Sec63p, Sec71p, Sec72p). Productive interaction requires displacement of hsp70 from the precursor, a reaction that is facilitated by Ydj1p, a homologue of the Escherichia coli DnaJ protein. Both DnaJ and Ydj1p regulate chaperone activity by stimulating the ATPase activity of their respective hsp70 partners (E. coli DnaK and S. cerevisiae Ssa1p, respectively). In the ER lumen, another hsp70 chaperone, BiP, binds ATP and interacts with the ER membrane via its contact with a peptide loop of Sec63p. This loop represents yet another DnaJ homologue in that it contains a region of approximately 70 residue similarity to the 'J box', the most conserved region of the DnaJ family of proteins. In the presence of ATP, under conditions in which BiP can bind to Sec63p, the secretory precursor passes from the cytosol into the lumen through a membrane channel formed by Sec61p. A second route to the membrane pore that is used by many other secretory precursors, particularly in mammalian cells, requires that the polypeptide engage the ER membrane as the nascent chain emerges from the ribosome. Such cotranslational translocation bypasses the need for certain Sec proteins, instead utilizing an alternate set of cytosolic and membrane factors that allows the nascent chain to be inserted directly into the Sec61p channel.

Publication types

  • Review

MeSH terms

  • Cytoplasm / chemistry
  • Endoplasmic Reticulum
  • Membrane Proteins / metabolism
  • Peptides / metabolism*
  • Protein Biosynthesis / genetics
  • Saccharomyces cerevisiae / metabolism*

Substances

  • Membrane Proteins
  • Peptides