Triggering of CD95 (APO-1/Fas) on different T- and B-cell lines resulted in the induction of a number of kinases (35 kDa, 38 kDa, 46 kDa and 54 kDa) that phosphorylate c-Jun and to a lesser extent Histone H1. Activation of these kinases was independent of protein biosynthesis and preceded apoptotic DNA degradation. The kinase activation pattern was specific for CD95 triggering since a variety of physical or chemical inducers of T- and B-cell apoptosis activated different kinases. The kinase activities at 46 and 54 kDa contained members of the stress-activated family of protein kinases (JNK/SAPK). Activation of the CD95-specific set of kinases was prevented by treating cells with the ICE-inhibiting peptide N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk) or by overexpression of the cow pox virus serpin CrmA. However, despite inhibition of ICE-like proteases the death signal was readily initiated at the cell membrane since a CD95 death-inducing signaling complex (DISC) was formed. Thus, our results demonstrate that ICE-like proteases in the CD95 pathway function downstream of the DISC but upstream of SAP kinases.