Improved image registration by using Fourier interpolation

Magn Reson Med. 1996 Dec;36(6):923-31. doi: 10.1002/mrm.1910360615.

Abstract

This paper presents a technique for performing two-dimensional rigid-body image registration for functional magnetic resonance images (fMRI). The method provides accurate motion correction without local distortion. The approach is to perform the translation and rotation in the Fourier domain. For images sampled on a grid, such as in echo-planar imaging (EPI), one potential stumbling block to this approach is the computational burden of reconstruction, since the rotated image will no longer be on the Cartesian grid. A method of approximating rotations via local translations (shearing) is presented, which keeps the data on the Cartesian grid. This can provide quite accurate approximations with only a moderate amount of computation. A mean squared error (MSE) criterion is used for determining the registration parameters. This method is tested on several sets of simulated images and shown to have an accuracy ranging from 0.02 to 0.3 pixels for images with SNRs ranging from 100 to 10, respectively. These techniques have been tested on several sets of images. They are shown to work well on real subjects, for both echo-planar and spiral data acquisition schemes. The techniques are used in an activation study in which the subject moved his head during image collection. After use of this registration technique, the activation is easily detected.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Fourier Analysis*
  • Head Movements
  • Humans
  • Image Enhancement / methods*
  • Magnetic Resonance Imaging*