Genomic fingerprinting of 80 strains from the WHO multicenter international typing study of listeria monocytogenes via pulsed-field gel electrophoresis (PFGE)

Int J Food Microbiol. 1996 Oct;32(3):343-55. doi: 10.1016/s0168-1605(96)01147-6.

Abstract

An international multicenter typing study of Listeria monocytogenes was initiated by the World Health Organization (Food Safety Unit, Geneva) in order to evaluate the usefulness of various phenotypic and genotypic typing methods for L. monocytogenes, to select and standardize the most appropriate methods to define common nomenclature of varieties and to select specific reference strains. Pulsed-field gel electrophoresis was used in four laboratories for molecular characterization of a set of 80 'coded' strains distributed to all participating laboratories. The endonucleases ApaI and SmaI, used in all four laboratories, yielded between 21 and 28 restriction endonuclease digestion profiles (REDP). AscI was used, in addition, in laboratory A and displayed 21 REDP. The combination of ApaI, SmaI or AscI REDP established 25 to 33 genomic groups. depending on the laboratory and the number of viable strains. Agreement of typing data among the four laboratories ranged from 79 to 90%. Forty-nine (69%) of the 71 strains viable in all four laboratories were placed into exactly the same genomic groups in all four laboratories. The epidemiological relevance of the strains became known after decoding and it was shown that most of the epidemiologically related strains were correctly identified by the four groups of investigators. i.e., most related strains were placed into the same genomic groups by all four laboratories. Similar results were obtained when 11 duplicate cultures were analyzed-on average 84% of the duplicates were identified. Comparison of REDP obtained by laboratory A with REDP from previously analyzed set of 176 L. monocytogenes strains allowed the prediction of the serovar-groups of the 80 strains. These predictions of serovar-groups were later confirmed by serotyping results obtained by laboratories involved in the WHO multicenter typing study of L. monocytogenes. In general this study reconfirmed that PFGE is a very accurate and reproducible method for fine structure comparison and molecular typing of L. monocytogenes.

Publication types

  • Multicenter Study

MeSH terms

  • Bacterial Typing Techniques*
  • DNA Fingerprinting*
  • Electrophoresis, Gel, Pulsed-Field
  • Food Microbiology
  • Humans
  • Listeria monocytogenes / classification*
  • World Health Organization