Although encystation and excystation are crucial to transmission of Giardia lamblia, little is known about the regulation of these very distinct differentiation processes. Fingerprinting of giardial mRNA populations throughout the time course of differentiation demonstrated complex patterns in mRNA differential display. Certain transcripts appeared or increased, while others decreased or disappeared at specific times, in response to physiologic stimuli that mimic key stages in parasite descent through the host gastrointestinal tract. This approach has allowed the direct identification of critical stages in differentiation, as well as isolation of genes which may be crucial to the development of G. lamblia. One stage-specific single copy gene (ENC6) whose transcript is greatly upregulated during encystation was analyzed further. Partial sequence analysis revealed no correspondence with known genes. 3'-rapid amplification of cDNA ends (3'-RACE) analysis of ENC6 transcripts at various times of encystation revealed two polyadenylation sites. The more proximal site, 10 nucleotides past the single classic AGTAAA sequence, was utilized only during encystation and its transcript increased approximately 16-fold during the first 24 h of encystation. In contrast, a slightly divergent polyadenylation site 288 nucleotides downstream from the open reading frame (ORF) was used during both vegetative growth and encystation, although its transcript was present at low levels. These studies are the first evidence of differential mRNA processing in G. lamblia and suggest a potential role of the 3'-untranslated region (3'-UTR) in modulating gene expression during differentiation of this primitive eukaryote.