Experiments in dystrophin gene transgenic mice have supported the concept of treating Duchenne muscular dystrophy (DMD) by demonstrating that regional expression of recombinant dystrophin in dystrophic muscle leads to regional restoration of normal muscle morphology and that dystrophin mini-genes driven by muscle specific regulatory elements are probably more effective than the full-length dystrophin gene. As a gene therapy trial for DMD, dystrophin cDNAs were introduced into skeletal muscle fibers of dystrophin-deficient mice (mdx) through direct DNA injection into plasmid expression vectors, and by replication-defective recombinant retrovirus or adenovirus vectors. With direct injection of dystrophin cDNA into a plasmid expression vector or retrovirus vectors, less than 10% of adult mdx fibers of the injected muscle expressed dystrophin. On the other hand, greater efficiency has been reported for recombinant adenovirus injection into young mdx muscle. However, it is necessary to develop vectors, viral or plasmid DNA, which can be injected intravenously and directed to muscle tissues. This will involve designing vectors possessing appropriate cell-type specific tropism and/or gene transcriptional activity for DMD treatment. This is anticipated to be a vital component in the second stage of experiments aimed at DMD treatment.