Genetic mechanisms of estrogen-independence in breast cancer

Pathol Res Pract. 1996 Jul;192(7):743-51. doi: 10.1016/S0344-0338(96)80096-3.

Abstract

Endocrine therapy is effective in the treatment of breast cancer. Adjuvant treatment with tamoxifen reduces tumor recurrence and achieves increased survival. In metastatic disease, tamoxifen treatment accomplishes objective responses in +/- 50% of the patients with estrogen receptor-positive primary tumors. However, the response duration is limited due to the inevitable development of metastases resistant to tamoxifen. The mechanisms leading to tamoxifen resistance are largely unknown. We have set out to identify genetic pathways in the tumor cells causing failure of tamoxifen therapy. We selected an estrogen-dependent human breast cancer cell line (ZR-75-1) and demonstrated that genetic and epigenetic alterations can change the hormone-response phenotype of these cells. Subsequently, we applied insertional mutagenesis with defective retroviruses to these ZR-75-1 breast cancer cells. Integration of a retrovirus in the cellular DNA alters the genome structure and may modify the expression of genes in its surroundings. As a result of the altered gene expression, the biological phenotype of the infected cell may be changed. The infected ZR-75-1 cells were subjected to tamoxifen selection and a panel of tamoxifen-resistant cell lines has been established. Screening for a common integration site for the retrovirus has provided, so far, compelling evidence for the involvement of at least one genetic locus (BCAR 1) in breast cancer antiestrogen resistance in vitro.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Breast Neoplasms / genetics*
  • Carcinoma / genetics*
  • Estrogens / physiology*
  • Female
  • Humans

Substances

  • Estrogens