Rats treated systemically with kainate develop stereotyped epileptic seizures involving mainly limbic structures that may last for hours. This model of limbic status epilepticus has been widely studied using classical neuropathological techniques. We used in situ nick translation histochemistry to examine patterns of DNA fragmentation in this model. We found a stereotyped and reproducible pattern of neuronal populations that demonstrate evidence of DNA fragmentation from 24 h to one week after kainate treatment. Neither blockade of new protein synthesis nor blockade of the N-methyl-D-aspartate-type glutamate receptors significantly altered this response. Moreover, we saw no evidence of the regular internucleosomal cleavage of DNA that produces a characteristic laddered appearance of 180-200 bp DNA fragments after gel electrophoresis in samples obtained from microdissected affected regions. These studies suggest that DNA fragmentation after systemic kainate-induced seizures is not the result of programmed cell death. This assay may be useful for quantitative testing of both neuroprotective agents and mechanistic hypotheses.