Prodrugs of BMS-183920: metabolism and permeability considerations

J Pharm Sci. 1996 Aug;85(8):828-33. doi: 10.1021/js9600282.

Abstract

The oral bioavailability of BMS-183920, a diacidic, potent angiotensin II receptor antagonist, is low in rats (approximately 11%). In vivo studies in bile duct-cannulated rats indicated that BMS-183920 was metabolically stable and that the low bioavailability was due to incomplete intestinal absorption. Five acyl-ester prodrugs were synthesized which were 5-15 times more permeable than BMS-183920 through Caco-2 cells. However, limited studies in rats indicated that the oral bioavailability of BMS-183920 was improved only 2-fold, in the best case. The lack of a substantial increase in bioavailability was apparently due to presystemic prodrug hydrolysis or metabolism via N-glucuronidation. Bioavailability of BMS-183920 after oral dosing of a tetrazole-ester prodrug averaged 37%, the most significant improvement within this prodrug series. Interestingly, in vitro studies indicated that the tetrazole-ester prodrug was a substrate for glucuronosyl transferase; however, its rate of bioactivation (hydrolysis) was sufficiently high to provide a substantial increase in bioavailability of BMS-183920. Therefore, while prodrug modification of BMS-183920 improved Caco-2 cell permeability and oral absorption in vivo, the relative extents of hydrolysis (bioactivation) vs metabolism of the prodrug determined whether a substantial improvement in bioavailability was achieved.

MeSH terms

  • Angiotensin Receptor Antagonists*
  • Animals
  • Biological Availability
  • Biotransformation
  • Caco-2 Cells
  • Cell Membrane Permeability
  • Humans
  • Male
  • Microsomes, Liver / metabolism
  • Prodrugs / pharmacokinetics*
  • Quinolines / pharmacokinetics*
  • Quinolines / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Tetrazoles / pharmacokinetics*
  • Tetrazoles / pharmacology

Substances

  • Angiotensin Receptor Antagonists
  • Prodrugs
  • Quinolines
  • Tetrazoles
  • BMS 183920