The consequences of fractionated irradiation on the number of cardiac alpha- and beta-adrenergic receptors, myocardial norepinephrine concentration and in vitro assessed heart function were studied in Sprague-Dawley rats. Animals were locally irradiated on the thorax with a total dose of 50 Gy, in 5 weeks, using two different fractionation schemes (5 x 2.0 Gy/week and 3 x 3.3 Gy/week). Functional and biochemical assays were performed during treatment and at 6 months after initiation of treatment. During fractionated irradiation, the numbers of alpha- and beta-adrenergic receptors tended to rise. During this period, myocardial norepinephrine concentration remained fairly constant and no decrease in cardiac output was observed. At 6 months, a significant increase of the numbers of alpha- and beta-adrenergic receptors was observed in the 3.3 Gy/fraction group compared to age-matched controls, p = 0.012 and p = 0.02, respectively. At this time point, the myocardial norepinephrine concentration had decreased below control levels (p = 0.008 for the 3.3. Gy/fraction schedule, and p = 0.03 for the 2.0 Gy/fraction schedule). At 6 months, the cardiac output declined to 61% (p = 0.009) and 69% (p = 0.04) of control values for the 3.3 and 2.0 Gy/fraction schedules, respectively. The present data clearly show development of late cardiac sequelae caused by fractionated thorax irradiation with a total dose of 50 Gy. Moreover, this study lends support to the importance of fraction size with regard to the severity of the radiation-induced cardiac damage.