Function and production of nitric oxide in the coronary circulation of the conscious dog during exercise

Circ Res. 1996 Oct;79(4):840-8. doi: 10.1161/01.res.79.4.840.

Abstract

This study determined the changes in NO production from the coronary circulation of the conscious dog during exercise. The role of endogenous NO as it relates to coronary flow, myocardial work, and metabolism was also studied. Mongrel dogs were chronically instrumented for measurements of coronary blood flow (CBF), ventricular and aortic pressure, and ventricular diameter, with catheters in the aorta and coronary sinus. Acute exercise (5 minutes at 3.6, 5.9, and 9.1 mph) was performed, and hemodynamic measurements and blood samples were taken at each exercise level. Nitro-L-arginine (NLA, 35 mg/kg IV) was given to block NO synthesis, and the exercise was repeated. Blood samples were analyzed for oxygen, plasma nitrate/nitrite (an index of NO), lactate, glucose, and free fatty acid (FFA) levels. Acute exercise caused significant elevations in NO production by the coronary circulation (46 +/- 23, 129 +/- 44, and 63 +/- 32 nmol/min at each speed respectively, P < .05). After NLA, there was no measurable NO production at rest or during exercise. Blockade of NO synthesis resulted in elevations in myocardial oxygen consumption and reductions in myocardial FFA consumption for comparable levels of CBF and cardiac work. The metabolic changes after NLA occurred in the absence of alterations in myocardial lactate or glucose consumptions. NO production by the coronary circulation is increased with exercise and blocked by NLA. The absence of NO in the coronary circulation during exercise does not affect levels of CBF, because it shifts the relationship between cardiac work and myocardial oxygen consumption, suggesting that endogenous NO modulates myocardial metabolism.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Coronary Vessels / metabolism*
  • Dogs
  • Male
  • Myocardium / metabolism*
  • Nitric Oxide / metabolism*
  • Nitroarginine / pharmacology
  • Physical Conditioning, Animal*

Substances

  • Nitroarginine
  • Nitric Oxide