Overexpression of the epidermal growth factor receptor (EGFR) and ErbB-2 has been observed in a variety of human tumours, making these receptors promising targets for directed tumour therapy. Since many tumour cells express both ErbB-2 and EGFR and these receptors synergise in cellular transformation, therapeutic reagents simultaneously binding to ErbB-2 and EGFR might offer advantages for tumour therapy. We have previously described the potent anti-tumoral activity of a bispecific antibody toxin that contains ErbB-2- and EGFR-specific single-chain Fv (scFv) domains. Here we report the construction and functional characterisation of a novel bispecific recombinant toxin, scFv(FRP5)-TGF alpha-ETA. The fusion protein consists of the antigen-binding domain of the ErbB-2-specific MAb, FRP5, and the natural EGFR ligand, TGF alpha, inserted at different positions in truncated Pseudomonas exotoxin A. ScFv(FRP5)-TGF alpha-ETA protein displayed binding to EGFR and ErbB-2, thereby inducing activation of the receptors, which was dependent on the cellular context and the level of EGFR and ErbB-2 expression. The bispecific molecule was cytotoxic in vitro for tumour cells expressing various levels of the target receptors. In vivo scFv(FRP5)-TGF alpha-ETA potently inhibited the growth of established A431 tumour xenografts in nude mice.