To determine if overexpression of manganese-containing SOD (MnSOD) alters cell sensitivity to asbestos, an expression cassette containing murine MnSOD cDNA was cotransfected with pSV2neo, a plasmid conferring resistance to the antibiotic G418, into a diploid cell line of hamster tracheal epithelial (HTE) cells. Pools of G418-resistant transfectants were characterized by Southern and Northern blot analyses and enzyme activity assays. Although increases in MnSOD gene copies in individual cell pools ranged from approximately 7- to 86-fold in comparison to cells transfected with pSV2neo alone, steady-state levels of MnSOD mRNA were increased only by 1.4-to 2.3-fold. Despite modest increases in MnSOD mRNA, significant elevations in MnSOD enzyme activity were observed in pools of G418-resistant cells. MnSOD-transfected cell lines were more resistant to the cytotoxic effects of crocidolite asbestos using a sensitive colony-forming efficiency (CFE) assay. These data show that MnSOD has a direct role in cell defense against asbestos-induced cytotoxicity, an oxidant-dependent process.