SPECT and associated imaging procedures were used in beagle dogs to (1) evaluate the uptake, distribution, and clearance properties of i.v.-injected 123I IMP (IMP) and 99mTc HMPAO (HMPAO) in the brain, lungs, liver, and kidneys; (2) quantify the acute effects (after 15 sec) of very low doses (0.5 or 1.0 mg/kg) cocaine on the kinetics and localization properties of IMP and HMPAO; and (3) evaluate comparative imaging properties of IMP and HMPAO for measuring regional cerebral blood flow (rCBF). Regional and global uptake and localization of IMP or HMPAO were evaluated in control studies using dynamic planar (0-30 min) and SPECT imaging (at 35 min). The regional distribution properties of IMP and HMPAO in the brain were estimated from regions of interest (ROIs) drawn around anatomic structures on MR slices and manually registered with corresponding SPECT slices. Cocaine significantly reduced the 30-min IMP uptake in the brain and lungs by approximately 15%, but only slightly changed HMPAO uptake in the brain and other organs. In the control studies, the respective uptakes of IMP in the brain and lungs were 9 and 39% greater (p < 0.01) than those of HMPAO. In control SPECT studies, the highest uptake of IMP was observed in the thalamus and progressively less activity was observed in the parietal lobe, frontal lobe, cerebellum, occipital lobe, and entire brain; activity in the olfactory bulb was lower than in all other regions. Cocaine reduced IMP uptake in the cerebellum (p < 0.01), occipital lobe (p < 0.01), and entire brain (p < 0.05). IMP uptake (cpm/pixel-mCi) in the different brain regions was 1.3 to 2.1 times greater than that of HMPAO (p < 0.001). HMPAO uptake was more homogeneous throughout the gray matter of the brain; no significant uptake differences were observed among flagged regions. Results indicate that single, acute doses of cocaine, 0.5 and 1.0 mg/kg, significantly altered the uptake and localization properties of IMP in the dog's brain, lungs, liver, and kidneys. Variations in regional uptake of IMP in the parietal, frontal, and occipital lobes, cerebellum, and thalamus were greater than with HMPAO.