To study the effect of prolonged diabetes on protein synthesis and on the activities of initiation factors eIF-2 and eIF-2B in the liver, female rats were treated with streptozotocin. Some animals were mated and studied on day 20 of pregnancy, whereas others were kept virgin and studied in parallel. The protein synthesis rate was measured with an "in vitro' cellfree system, and was lower in diabetic pregnant and virgin animals than in pregnant and virgin controls (30-60%). The fetuses of diabetic rats had a lower protein synthesis rate than those from controls, although they always showed a higher protein synthesis rate than their mothers or virgin rats. Protein synthesis rate, RNA concentration, and initiation factor 2 activity were higher in pregnant than in virgin rats. Both activity and level of eIF-2 factor changed in parallel to the protein synthesis rate, although no differences could be detected between control and diabetic animals. The eIF-2B activity in tissue extracts from diabetic virgin rats and fetuses was lower than in extracts from their controls, whereas no differences could be detected between pregnant and virgin control rats nor between pregnant control and pregnant diabetic animals. The percentage of the phosphorylated form of eIF-2 factor, eIF-2(alpha P), was slightly lower in virgin than in pregnant rats but was unaffected by the diabetic condition, while in diabetic fetuses this parameter was lower than in their corresponding controls. The cyclic adenosine monophosphate dependent protein kinase level was lower in diabetic rats than in controls, whereas no changes in the activity of casein kinase II were found. The isoelectric forms of the beta subunit of eIF-2 factor, eIF-2 beta, were different in the diabetic and the control animals, indicating that insulin deficiency modifies the phosphorylation of specific substrates. Since no differences were detected in RNA or eIF-2 content between control and diabetic rats, translation may, at least partly, be inhibited in the liver by an impairment of peptide chain initiation caused by the decreased eIF-2B activity which nevertheless is independent of eIF-2 alpha phosphorylation.