Bayesian procedures are developed for estimating mutation rates from fluctuation experiments. Three Bayesian point estimators are compared with four traditional ones using the results of 10,000 simulated experiments. The Bayesian estimators were found to be at least as efficient as the best of the previously known estimators. The best Bayesian estimator is one that uses (1/m2) as the prior probability density function and a quadratic loss function. The advantage of using these estimators is most pronounced when the number of fluctuation test tubes is small. Bayesian estimation allows the incorporation of prior knowledge about the estimated parameter, in which case the resulting estimators are the most efficient. It enables the straightforward construction of confidence intervals for the estimated parameter. The increase of efficiency with prior information and the narrowing of the confidence intervals with additional experimental results are investigated. The results of the simulations show that any potential inaccuracy of estimation arising from lumping together all cultures with more than n mutants (the jackpots) almost disappears at n = 70 (provided that the number of mutations in a culture is low). These methods are applied to a set of experimental data to illustrate their use.