The first nine genes of respiratory syncytial virus (RSV), a nonsegmented negative-strand RNA virus, are separated by intergenic regions which range in size from 1 to 52 nucleotides for strain A2 and lack obvious consensus elements except that each ends in an A (genome sense). Their significance for gene expression was investigated by using RSV-CAT-LUC RNA, a helper-dependent cDNA-encoded dicistronic analog of RSV genomic RNA in which the viral genes were replaced by a negative-sense copy of the translational open reading frame (ORF) encoding chloramphenicol acetyltransferase (CAT) as the upstream, leader-proximal gene and that encoding luciferase (LUC) as the downstream gene. These foreign ORFs were flanked by the RSV gene-start (GS) and gene-end (GE) transcription signals and separated by the naturally occurring G/F intergenic region. The RSV-CAT-LUC minigenome was synthesized in vitro and transfected into RSV-infected cells, and synthesis of the CAT and LUC mRNAs was monitored by enzyme assay and Northern (RNA) blot hybridization. Surprisingly, substitution of each of the other naturally occurring RSV intergenic regions in turn did not significantly alter the absolute or relative amounts of the two mRNAs. Substitution of a nonnatural 10-nucleotide intergenic region, or elimination of the intergenic region altogether, also had little effect on the level of expression of the two genes. Four of the minigenome variants containing naturally occurring intergenic regions were modified further by replacing part of the LUC ORF with a second copy of the CAT ORF, so that each of the two mRNAs would hybridize equally with a CAT-specific probe and their relative molar amounts could be determined. The level of expression of the downstream gene was 0.30 to 0.36 that of the upstream one. This determined the magnitude of RSV transcriptional polarity across a gene pair and confirmed that this value was very similar among the various intergenic regions. Minigenome transcription also yielded a CAT-LUC readthrough mRNA at a level 0.10 to 0.13 that of the LUC mRNA. In summary, the structurally diverse RSV intergenic regions do not appear to play a role in modulating RSV gene expression.