We have generated a transgenic mouse line harbouring the human ornithine decarboxylase gene under the control of mouse metallothionein I promoter. Even in the absence of an exposure to heavy metals, ornithine decarboxylase was over-expressed in heart, testis, brain, and especially in liver, of the transgenic animals. An exposure of the transgenic mice to zinc further enhanced the enzyme activity to a level which in liver represented up to 8000-fold increase in comparison with non-transgenic animals. The striking stimulation of liver ornithine decarboxylase activity upon treatment of the transgenic mice with zinc was accompanied by a nearly 150-fold increase in the hepatic putrescine content as compared with similarly treated non-transgenic animals. Even though the liver putrescine concentration reached that of spermidine and spermine in the transgenic animals, the contents of the higher polyamines only transiently increased upon zinc administration and then returned to the basal level. These findings once again indicate that mammalian cells possess extremely powerful regulatory machinery to prevent an over-accumulation of spermidine and spermine in non-dividing cells, and that very high tissue putrescine concentrations can be tolerated, at least for periods of a few days, with seemingly no phenotypic changes.