It has been known for several years that the triggering of cell proliferation is associated with an increase of the activity of Na,K,Cl cotransport and of transport system A for neutral amino acids. These systems are also enhanced during the volume recovery of hypertonically shrunk cells. We demonstrate here that during the cell cycle of NIH3T3 cells, an increase in cell volume is associated with an enhanced cell content of potassium and amino acids. Bumetanide delays cell cycle progression and hampers volume increase. The nonmetabolizable analog 2-methylamino-isobutyric acid, a specific substrate of system A, can partially substitute natural amino acids accumulated during the cell cycle as intracellular osmolytes. It is therefore proposed that the stimulation of Na,K,Cl cotransport and of system A, observed in proliferating cells, causes an expansion of cell volume through an enhanced intracellular accumulation of both inorganic and organic osmolytes and the concurrent, osmotically obliged uptake of water.