It is generally believed that ascertainment corrections are unnecessary in linkage analysis, provided individuals are selected for study solely on the basis of trait phenotype and not on the basis of marker genotype. The theoretical rationale for this is that standard linkage analytic methods involve conditioning likelihoods on all the trait data, which may be viewed as an application of the ascertainment assumption-free (AAF) method of Ewens and Shute. In this paper, we show that when the observed pedigree structure depends on which relatives within a pedigree happen to have been the probands (proband-dependent, or PD, sampling) conditioning on all the trait data is not a valid application of the AAF method and will result in asymptotically biased estimates of genetic parameters (except under single ascertainment). Furthermore, this result holds even if the recombination fraction R is the only parameter of interest. Since the lod score is proportional to the likelihood of the marker data conditional on all the trait data, this means that when data are obtained under PD sampling the lod score will yield asymptotically biased estimates of R, and that so-called mod scores (i.e., lod scores maximized over both R and parameters theta of the trait distribution) will yield asymptotically biased estimates of R and theta. Furthermore, the problem appears to be intractable, in the sense that it is not possible to formulate the correct likelihood conditional on observed pedigree structure. In this paper we do not investigate the numerical magnitude of the bias, which may be small in many situations. On the other hand, virtually all linkage data sets are collected under PD sampling. Thus, the existence of this bias will be the rule rather than the exception in the usual applications.