Population geneticists work with a nonrandom sample of the human genome. Conventional practice ensures that unusually variable loci are most likely to be discovered and thus included in the sample of loci. Consequently, estimates of average heterozygosity are biased upward. In what follows we describe a model of this bias. When the mutation rate varies among loci, bias is increased. This effect is only moderate, however, so that a model of invariant mutation rates provides a reasonable approximation. Bias is pronounced when estimated heterozygosity is < approximately 35% Consequently, it probably affects estimates from classical polymorphisms as well as from restriction-site polymorphisms. Estimates from short-tandem-repeat polymorphisms have negligible bias, because of their high heterozygosity. Bias should vary not only among categories of polymorphism but also among populations. It should be largest in European populations, since these are the populations in which most polymorphisms were discovered. As this argument predicts, European estimates exceed those of Africa and Asia at systems with large bias. The magnitude of this European excess is consistent with the version of our model in which mutation rates vary across loci.