Mycobacterium "habana" strain TMC 5135, which has been proposed as a vaccine against both leprosy and tuberculosis, is considered to be a strain of serotype I of the recognized species Mycobacterium simiae. We have now shown that each of these strains possesses characteristic polar glycopeptidolipids (GPL) which are sufficiently different to allow unequivocal strain identification. Thin layer chromatographic analysis demonstrated that M. habana synthesizes a family of apolar GPLs and three distinct polar GPLs (pGPL-I to -III) which exhibited migration patterns different from those of M. simiae serotype I (pGPL-Sim). Using a combination of chemical, mass spectrometric, and proton-NMR analyses, the GPLs from M. habana were determined to be based on the same generic structure as those from the M. avium complex, namely N-fatty acyl-D-Phe-(O-saccharide)-D-allo-Thr-D-Ala-L-alaninyl-O-m onosaccharide. The de-O-acetylated apolar GPLs contain a 3-O-Me-6-deoxy-Tal attached to the allo-Thr and either a 3-O-Me-Rha or a 3,4-di-O-Me-Rha attached to the alaninol. In the pGPLs, oligosaccharides were found to be attached to the allo-Thr. The oligoglycosyl alditol reductively released from the least polar pGPL-I was fully characterized as L-Fucp alpha 1 in --7 with 3-(6-O-Me)-D-Glcp beta 1 in --7 with 3-(4-O-Me)-L-Rhap alpha 1 in --7 with 3-L-Rhap alpha 1 in --7 with 2-(3-O-Me)-6-deoxy-Tal. In pGPl-II and -III, the terminal Fuc residue is further 3-O-methylated and 4-O-substituted with an additional 2,4-di-O-Me-D-GlcA and 4-O-Me-D-GlcA, respectively. The corresponding oligosaccharide from pGPL-Sim was shown to be of identical molecular weight to pGPL-II but terminating with a 3,4-di-O-Me-GlcA. Enzyme-linked immunosorbent assay-based serological studies using anti-M. habana and anti-M. simiae sera against whole cells and purified pGPLs firmly established the polar GPLs as important antigens and indicated that the terminal epitopes L-Fuc-, 2,4-di-O-Me-D-GlcA, and 4-O-Me-D-GlcA uniquely present in pGPL-I, -II, and -III, respectively, confer sufficient specificity for the identification of M. habana as a distinct serotype of M. simiae.