Mouse preimplantation embryos express at least two functional cell surface growth factor receptors that are radiosensitive in other cell types, the epidermal growth factor receptor (EGF receptor) and the insulin-like growth factor I receptor (IGF-I receptor). These embryos also express ligands that bind to and activate these receptors, including transforming growth factor alpha (TGF-alpha) and insulin-like growth factor II (IGF-II), which bind to the EGF receptor and IGF-I receptor, respectively. Embryo-expressed IGF-II and TGF-alpha increase embryo cell number--a measure of proliferation rate--and stimulate blastocoele formation--a measure of cell differentiation--allowing the embryo to self-modulate cell proliferation and morphogenesis into a blastocyst (Paria and Dey, Proc. Natl. Acad. Sci. USA 87, 4756-4760, 1990; Dardik and Schultz, Development 113, 919-930, 1991; Rappolee et al., Genes Dev. 6, 939-952, 1992). In this work, we tested the hypothesis that IGF-I receptor and/or EGF receptor function may be impaired to produce the radiation-induced competitive cell proliferation disadvantage that is expressed by irradiated embryos that are aggregated with nonirradiated embryos in chimeras. Cleavage-stage embryos were irradiated with 137Cs gamma rays (0.5 or 1.0 Gy) and paired with nonirradiated same-stage embryos to form groups of chimeras that were cultured in control medium or medium containing IGF-II, insulin, EGF or TGF-alpha. The cell proliferation disadvantage expressed by the irradiated embryos within chimeras was completely eliminated by IGF-II or insulin. In contrast to the rescue action of IGF-II or insulin in chimeras, neither EGF nor TGF-alpha could prevent the cell proliferation disadvantage exhibited by irradiated embryos paired with nonirradiated embryos in chimeras. For irradiated conventionally cultured zona-enclosed embryos, IGF-II and TGF-alpha did not increase mean embryo cell number significantly, although both IGF-II and TGF-alpha did increase blastocoele formation significantly. Collectively, these results support the following conclusions: (1) Ligands for the IGF-I receptor can rescue irradiated embryos from competitive cell proliferation disadvantage in chimeras, while ligands for the EGF receptor cannot; (2) IGF-I receptor function and EGF receptor function are affected differently by ionizing radiation with respect to competitive cell proliferation and are affected similarly by ionizing radiation with respect to blastocoele formation; (3) EGF receptor-dependent stimulation of competitive cell proliferation and cell differentiation are affected differently by ionizing radiation in preimplantation embryos.