Septic shock results from excessive stimulation of host immune cells, particularly monocytes and macrophages, by lipopolysaccharide (LPS) released from gram-negative bacteria. Macrophage-derived cytokines, such as tumor necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1 beta), have been identified as central mediators in the pathogenesis of septic shock and the resultant mortality. Therefore, these cytokines were targets for experimental therapy for septic shock. Because of tetracycline's ability to intervene in cellular mechanisms involved in cytokine secretion, we tested the effect of tetracycline on LPS-induced septic shock and inflammatory lesions in mice. Tetracycline was found to protect mice against LPS-induced lethality and to abolish clinical signs of LPS-induced inflammatory lesions. This protection correlates with tetracycline's ability to reduce LPS-induced TNF-alpha levels in serum. Furthermore, tetracycline was found to inhibit LPS-induced TNF-alpha and IL-1 beta secretion, but not cytokine mRNA accumulation, in human monocytes in vitro. The results presented here suggest that tetracycline is a potent drug for LPS-induced pathology and that its mechanism of action involves blockage of posttranscriptional events of cytokine production.