Involvement of tyrosine residue in the inhibition of plant vacuolar H(+)-pyrophosphatase by tetranitromethane

Biochim Biophys Acta. 1996 May 2;1294(1):89-97. doi: 10.1016/0167-4838(96)00005-2.

Abstract

Plant vacuolar vesicles contain a novel H(+)-translocating pyrophosphatase (H(+)-PPase, EC 3.6.1.1). Modification of tonoplast vesicles and purified vacuolar H(+)-PPase from etiolated mung bean seedlings with tetranitromethane (TNM) resulted in a progressive decline in H(+)-translocating pyrophosphatase activity. The half-maximal inhibition was brought about by 0.6, 1.0, and 0.8 mM TNM for purified and membrane-bound H(+)-PPases, and its associated proton translocation, respectively. The maximal inhibition of vacuolar H(+)-PPase by TNM occurred at a pH value above 8. Loss of activity of purified H(+)-pyrophosphatase followed pseudo-first order rate kinetics, yielding a first-order rate constant (k2) of 0.039 s(-1) and a steady-state dissociation constant of inactivation (Ki) of 0.02 mM. Covalent modification of vacuolar H(+)-PPase by TNM increased Km value of the enzyme for its substrate without a significant effect on Vmax. Double logarithmic plots of the pseudo-first order rate constant (kobs) versus TNM concentration exhibited a slope of 0.88, suggesting that at least one tyrosine residue was involved in the inactivation of H(+)-PPase enzymatic activity. Further spectrophotometric measurements of the nitrated H(+)-pyrophosphatase indicated that TNM could modify approximately two tyrosine residues/subunit of the enzyme. However, Tsou's analysis revealed that only one of those modified tyrosine residues directly participated in the inhibition of enzymatic activity of vacuolar H(+)-PPase. The physiological substrate, i.e., dimagnesium pyrophosphate, provided substantial protection against inactivation by TNM. Moreover, NEM pretreatment of the enzyme decreased the number of subsequent nitration of vacuolar H(+)-PPase. Taken together, we suggest that vacuolar H(+)-pyrophosphatase contains a substrate-protectable tyrosine residue conferring to the inhibition of its activity and this tyrosine residue may be located in a domain sensitive to the modification of Cys-634 by NEM.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrophoresis, Polyacrylamide Gel
  • Enzyme Inhibitors / pharmacology*
  • Fabaceae / enzymology*
  • Inorganic Pyrophosphatase
  • Kinetics
  • Plants, Medicinal*
  • Pyrophosphatases / antagonists & inhibitors*
  • Pyrophosphatases / isolation & purification
  • Pyrophosphatases / metabolism
  • Spectrophotometry
  • Tetranitromethane / pharmacology*
  • Tyrosine / metabolism*
  • Vacuoles / enzymology*

Substances

  • Enzyme Inhibitors
  • Tyrosine
  • Pyrophosphatases
  • Inorganic Pyrophosphatase
  • Tetranitromethane