Transcription of the low density lipoprotein (LDL) receptor gene is regulated by intracellular cholesterol concentration, hormones, and growth factors. We studied the mechanisms by which insulin and estradiol stimulate promoter activity of the LDL receptor gene. Hormonal effects were analyzed in HepG2 cells after transient transfection with promotor reporter gene constructs. Successive 5' deletions of the LDL receptor promoter fragment from -537 to +88 revealed the sterol regulatory element 1 (SRE-1) between -65 and -56 as an insulin- and estradiol-sensitive cis-element. If the SRE-1 is point mutated at position -59 (C to G), which abolishes the binding of the SRE binding proteins (SREBP-1 and SREBP-2), no insulin or estradiol stimulatory effect on reporter gene expression was observed, indicating a role of SRE binding proteins in this regulatory mechanism. The concentration of the 125-kDa membrane-integrated SREBP-1 precursor protein in LDL repressed HepG2 cells is not altered by hormone treatment. Concentrations of SREBP-1 mRNA and precursor protein are reduced significantly by high and stable expression of an SREBP-1 antisense cDNA fragment in HepG2 cells (SREBP1(-) cells). Transfection of SREBP1(-) cells with promoter construct phLDL4 (-105 to +88) reduces induction of reporter gene activity by insulin and insulin-like growth factor-I to 35 and 17%, respectively, compared with HepG2 cells. The stimulatory effect of estradiol remains unchanged, and the inductions by pravastatin are enlarged. We conclude that different regulatory effects converge at SRE-1, but that SREBP-1 is selectively involved in the signal transduction pathway of insulin and insulin-like growth factor-I leading to LDL receptor gene activation.