Using a novel phosphorylated spin trap, 5-diethoxy-phosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO), an analog of the commonly used trap 5,5'-dimethyl-1-pyrroline N-oxide (DMPO), we have investigated the reactions of sulfur-centered radicals produced from the oxidation of thiols and sulfite by peroxynitrite. The predominant species trapped in all cases are the corresponding sulfur-centered radicals, i.e. glutathionyl radical (GS) from glutathione (GSH), N-acetyl-DL-penicillamine thiyl radical (S-NAP) from N-acetyl-DL-penicillamine (NAP) and sulfate anion radical (SO3-) from sulfite. These radicals consume molecular oxygen forming either peroxyl or superoxide anion radicals. GS, S-NAP, and (SO3-)-derived radicals react with ammonium formate to form the carbon dioxide anion radical (CO2-). Further support of spin adduct assignments and radical reactions are obtained from photolysis of S-nitrosoglutathione and S-nitroso-N-acetyl-DL-penicillamine. We conclude that the direct reaction of peroxynitrite with thiols and sulfate forms thiyl and sulfate anion radicals, respectively, by a hydroxyl radical-independent mechanism. Pathological implications of thiyl radical formation and subsequent oxyradical-mediated chain reactions are discussed. Oxygen activation by thiyl radicals formed during peroxynitrite-mediated oxidation of glutathione may limit the effectiveness of GSH against peroxynitrite-mediated toxicity in cellular systems.