The binding of a carbohydrate to a lectin may affect the conformation of the ligand. To address this question for the galectin from chicken liver, the conformation of Gal beta 1-2Gal beta 1-R was analyzed in the free and in the galectin-bound state with 2D-ROESY- and 1D- as well as 2D-transferred NOE-experiments. A computer-assisted analysis of spatial parameters of the ligand by molecular dynamics (MD) and random walk molecular mechanics (RAMM) calculations, taking different dielectric constraints from epsilon = 1 to epsilon = 80 and various force fields into account, were instrumental to define the energetic minima of the free state. NMR-derived interresidual distance constraints enabled a conformational mapping. The two overlapping interresidual distance constraints obtained from transferred-NOE experiments of the galectin-ligand complex clearly support the notion that the conformation of the disaccharide in the bound state is at least very close to its global energy minimum state in solution.