Felbamate inhibits dihydropyridine-sensitive calcium channels in central neurons

J Pharmacol Exp Ther. 1996 Apr;277(1):121-7.

Abstract

The effect of the antiepileptic drug felbamate (FBM) on high-voltage-activated Ca++ currents was studied in cortical and neostriatal neurons acutely isolated from adult rats. Patch-clamp recordings in the whole-cell configuration were performed. Ba++ ions as the charge carrier for Ca++ channels were used. In pyramidal cortical cells, FBM dose-dependently reduced high-voltage-activated Ca++ currents in all the tested neurons. At concentrations of 30 to 100 nM, FBM already produced a significant inhibition of high-voltage-activated Ca++ currents (-6/-15%). At saturating concentrations (1-3 microM), FBM-mediated inhibition averaged 44%. The responses were fully reversible. The dose-response curves revealed IC50 of 504 nM. In striatal neurons, FBM decreased the same conductances by about 28%; the threshold dose was 1 to 2 microM, with an IC50 of 18.7 microM. In both structures, the observed inhibitions were unaffected by omega-conotoxin GVIA and omega-agatoxin IVA, suggesting that N-like channels and P-Like channels were not involved in the FBM-mediated responses. In addition, when omega-conotoxin GVIA and omega-agatoxin IVA (100 nM) were coapplied, the FBM-mediated inhibition on the remaining Ca++ currents averaged 87%. The FBM responses were occluded by micromolar concentrations of nifedipine, supporting a direct interference with dihydropyridine-sensitive channels. It is concluded that the described effect of FBM might represent an efficacious mechanism for either controlling spike discharge from epileptic foci or protecting neurons from excessive Ca++ loading. In both cases, FBM would act as a broad spectrum neuroprotective agent.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anticonvulsants / pharmacology*
  • Calcium Channel Blockers / pharmacology*
  • Cerebral Cortex / drug effects*
  • Cerebral Cortex / metabolism
  • Corpus Striatum / drug effects*
  • Corpus Striatum / metabolism
  • Felbamate
  • Male
  • Neurons / drug effects*
  • Neuroprotective Agents / pharmacology*
  • Peptides / pharmacology
  • Phenylcarbamates
  • Propylene Glycols / pharmacology*
  • Rats
  • Rats, Wistar
  • omega-Conotoxin GVIA

Substances

  • Anticonvulsants
  • Calcium Channel Blockers
  • Neuroprotective Agents
  • Peptides
  • Phenylcarbamates
  • Propylene Glycols
  • omega-Conotoxin GVIA
  • Felbamate