Studies to determine if Toxoplasma gondii-specific human T cells lyse parasite-infected cells have yielded conflicting results. Furthermore, attempts to obtain human cytotoxic CD8+ T lymphocytes have been difficult because of the lack of a reproducible system for their generation. By using paraformaldehyde-fixed, T. gondii-infected peripheral blood mononuclear cells as antigen-presenting cells, we developed a method whereby T. gondii-specific T-cell lines can be reproducibly generated. Six T. gondii-specific T-cell lines were generated from an individual chronically infected with T. gondii. Cytofluorometric analysis of these lines revealed > 99% CD3+, 85 to 95% CD3+ alpha beta T-cell-receptor-positive (TCR+), 5 to 9% CD3+ gamma delta TCR+, 50 to 70% CD4+, and 20 to 40% CD8+ cells when cells were examined during the first 3 weeks of stimulation and >99% CD3+, >99% CD3+ alpha beta TCR+, < 1% CD3+ gamma delta TCR+, 20 to 40% CD4+, and 60 to 80% CD8+ cells when cells were examined between 5 and 11 weeks. Both CD4+ and CD8+ T cells had remarkable cytotoxic activity against T. gondii-infected target cells (30 to 50% specific Cr release at an effector-to-target ratio of 30:1) but not against uninfected target cells ( < 10% at an effector-to-target ratio of 30:1). Cytotoxic activity by the whole T-cell lines was not T. gondii strain specific. Whole T-cell lines were cytotoxic for target cells infected with the C56 and ME49 strains and the RH strain (which was used to infect peripheral blood mononuclear cells). T. gondii-specific T-cell lines displayed the predominant expression of V beta 7 TCR. The CDR3 regions of the V beta 7 TCRs of these T-cell lines showed a striking degree of sequence identity (oligoclonality). T-cell lines obtained by the method reporter here can be used to characterize functional activity of T-lymphocyte subsets in humans infected with T. gondii.