Background: Models of short-chain fatty acid absorption have focused on the stimulation of sodium absorption, an effect mainly located in the proximal colon of man. With the present efforts to utilize butyrate enemas as a treatment of ulcerative colitis, it seemed important to assess the transport in the rectum.
Methods: Non-equilibrium dialysis of the rectum was applied by placing dialysis bags containing various electrolyte solutions in the rectum of volunteers for 30 min. In this period changes in ion concentrations were linear with time. Net absorption and secretion rates were calculated from the change in fluid composition.
Results: Sodium absorption was highest (24 +/- 8 mumol/cm2 h) in the presence of chloride and lowest (16 +/- 2 mumol/cm2 h) in the presence of bicarbonate and butyrate. Butyrate (70 mmol/l) was absorbed at a high rate of 7.1 +/- 2.2 mumol/cm2 h, independent on the presence of chloride, and was accompanied by increased bicarbonate secretion. Butyrate absorption increased to 9.6 +/- 1.8 mumol/cm2 h in sodium-free high-potassium media containing bicarbonate.
Conclusion: The results show that it is possible to increase butyrate uptake by manipulation of the electrolyte composition in the rectal lumen. Maximal uptake occurred with an electrolyte composition that was similar to the natural rectal content. The information gathered could be useful in designing enemas for trial in ulcerative colitis, provided the findings can be confirmed in these patients.