The effect of interleukin-4 (IL-4) on the fibrinolytic system of human microvascular and macrovascular endothelial cells in culture was studied. Only foreskin microvascular endothelial cells (EC) responded to IL-4 treatment with a dose- and time-dependent increase in urokinase-type plasminogen activator (u-PA) (control: 3.0 +/- 0.8 ng/10(5) cells/24 h; 200 U/mL IL-4: 6.7 +/- 0.8 ng/10(5) cells/24 h), whereas human macrovascular EC remained unaffected. A maximum effect was achieved with 200 U/mL IL-4. Little u-PA activity was detected in the conditioned media of human foreskin microvascular EC (HFMEC) treated without and with IL-4 before plasmin treatment (control: 0.03 +/- 0.003 IU/10(5) cells/20 h; 200 U/mL IL-4: 0.09 +/- 0.007 IU/10(5) cells/20 h). These values increased to 0.18 +/- 0.02 IU/10(5) cells/20 h and 0.53 +/- 0.04 IU/10(5) cells/20 h, respectively, after plasmin treatment, indicating that u-PA is released by HFMEC predominantly in its inactive precursor form single-chain u-PA (scu-PA). u-PA activity increased also in the cell lysates of HFMEC up to 2.5-fold after IL-4 treatment. Plasminogen activator inhibitor type-1 (PAI-1) levels produced by HFMEC remained unaffected by IL-4, whereas tissue-type plasminogen activator (t-PA) levels were slightly decreased when HFMEC were treated with IL-4. These findings were also reflected in the specific mRNA levels as determined by Northern blotting. u-PA-specific mRNA increased significantly in HFMEC in the presence of IL-4, whereas t-PA mRNA and PAI-1-specific mRNA in HFMEC and u-PA specific mRNA in human saphenous vein EC (HSVEC) remained unaffected by IL-4 treatment. Our findings suggest a role for IL-4 in the process of angiogenesis, in addition to its known proliferative effect on human microvascular EC, by increasing the fibrinolytic potential of such EC, thereby facilitating extracellular proteolysis and cell migration.