Activins are cytokines of the transforming growth factor beta superfamily that control various events during vertebrate embryo development and cell differentiation in the adult, and act through transmembrane receptors that contain a cytoplasmic protein-serine/threonine kinase domain. We describe the identification, deduced primary structure, and expression pattern of Atr-II, a receptor serine/threonine kinase found in Drosophila. With the exception of the spacing of 10 cysteine residues, the extracellular domain of Atr-II is very dissimilar from those of vertebrate activin receptors, yet it binds activin with high affinity and specificity. The kinase domain sequence of Atr-II is 60% identical to those of activin receptors from vertebrates, suggesting similarities in their signaling mechanisms. Maternal Atr-II transcript and its product are abundant in the oocyte. During development, the highest levels of Atr-II transcript and protein are observed in the mesoderm and gut. The possible role of an activin signaling system in Drosophila development is discussed.