The nucleocapsid protein NCp7 of human immunodeficiency virus type 1 (HIV-1), which is necessary for the formation of infectious virions, contains two zinc fingers of the Cys-X2-Cys-X4-His-X4-Cys form. To elucidate the importance of this particular motif, well conserved in retroviruses and retroelements, we substituted the histidine residue by a cysteine in the first zinc binding domain 13VKCFNCGKEGHTARNCRA30. The structures of the mutated and native zinc complexed peptides were studied by two-dimensional 600 MHz 1H nuclear magnetic resonance (NMR) in aqueous solution. The nuclear Overhauser effects were used as constraints to determine the solution structures using DIANA software followed by AMBER energy refinement. The results show that native and mutant peptides fold into non-identical three-dimensional structures, probably accounting for the loss of retrovirus infectivity following the His-Cys point mutation.