To test the hypothesis that CD8+ T cells inhibit viral replication at the level of cellular activation, an Epstein-Barr virus (EBV)-transformed cell line (FEc1) from a simian immunodeficiency virus (SIV)-seropositive sooty mangabey monkey was transfected with a human CD4 gene and shown to be replication-competent for HIV-1, HIV-2 and SIV. Utilizing a dual-chamber culture system, it was found that inhibition of viral replication can be mediated by a soluble factor. The FEc1 cell line was transiently transfected with an LTR-driven CAT reporter gene. It was found that autologous CD8+ T cells markedly inhibited CAT activity. Furthermore, co-transfection of the FEc1 cell line with an LTR-driven tat plasmid and LTR-CAT was able to quantitatively mitigate the suppressive effect. Thus, this inhibition appears to be directed at cellular mechanisms of viral transcription. Control transfections with an LTR-driven CAT plasmid with a mutation at the NFkB binding site yielded no CAT activity, suggesting that most viral replication as measured by CAT activity is dependent, to a large extent, upon cellularly derived NFkB binding proteins.