Chronic hypoxia increases the total blood volume (TBV) and pulmonary arterial blood pressure (Ppa) and induces pulmonary vascular remodeling. The present study was undertaken to assess how the pulmonary blood volume (PBV) changes during hypoxia and the possible role of PBV in chronic hypoxic pulmonary hypertension. A novel method has been developed to measure the TBV, PBV, and Ppa in conscious rats. The method consists of chronic implantation of a loose ligature around the ascending aorta and pulmonary artery, so that when the ligature is drawn tightly, it traps the blood in the pulmonary vessels and left heart and simultaneously kills the rat. The pulmonary veins are then ligated to separate the left ventricular blood volume from the PBV. This surgical approach, together with chronic catheterization of the pulmonary artery and the use of 51Cr-labeled red blood cells, allows measurement of TBV, PBV, and Ppa. This method has been used to analyze the relationships between TBV and PBV and between Ppa or right ventricular hypertrophy and PBV in two rat strains with markedly different TBV and Ppa responses to chronic hypoxia. PBV per given lung weight did not increase and even decreased during hypoxia despite marked increases in TBV. There was a close correlation between Ppa or right ventricular hypertrophy and PBV in the two strains of chronically hypoxic animals, suggesting that a greater PBV plays a significant role in the development of severe chronic hypoxic pulmonary hypertension in the altitude-susceptible Hilltop rats.