The three-dimensional structure of medium-chain acyl-CoA dehydrogenase from pig mitochondria in the native form and that of a complex of the enzyme and a substrate (product) have been solved and refined by x-ray crystallographic methods at 2.4-A resolution to R factors of 0.172 and 0.173, respectively. The overall polypeptide folding and the quaternary structure of the tetramer are essentially unchanged upon binding of the ligand, octanoyl (octenoyl)-CoA. The ligand binds to the enzyme at the rectus (re) face of the FAD in the crevice between the two alpha-helix domains and the beta-sheet domain of the enzyme. The fatty acyl chain of the thioester substrate is buried inside of the polypeptide and the 3'-AMP moiety is close to the surface of the tetrameric enzyme molecule. The alkyl chain displaces the tightly bound water molecules found in the native enzyme and the carbonyl oxygen of the thioester interacts with the ribityl 2'-hydroxyl group of the FAD and the main-chain carbonyl oxygen of Glu-376. The C alpha--C beta of the fatty acyl moiety lies between the flavin and the gamma-carboxylate of Glu-376, supporting the role of Glu-376 as the base that abstracts the alpha proton in the alpha--beta dehydrogenation reaction catalyzed by the enzyme. Trp-166 and Met-165 are located at the sinister (si) side of the flavin ring at the surface of the enzyme, suggesting that they might be involved in the interactions with electron transferring flavoprotein. Lys-304, the prevalent mutation site found in patients with medium-chain acyl-CoA dehydrogenase deficiency, is located approximately 20 A away from the active site of the enzyme.