An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair

Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6424-8. doi: 10.1073/pnas.90.14.6424.

Abstract

The human lymphoblastoid MT1 B-cell line was previously isolated as one of a series of mutant cells able to survive the cytotoxic effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). MT1 cells nevertheless remain sensitive to mutagenesis by MNNG and display a mutator phenotype. These phenotypes have been attributed to a single genetic alteration postulated to confer a defect in strand-specific mismatch repair, a proposal that attributes the cytotoxic effect of DNA alkylation in wild-type cells to futile attempts to correct mispairs that arise during replication of alkylated template strands. Our results support this view. MNNG-induced mutations in the HPRT gene of MT1 cells are almost exclusively G.C-->A.T transitions, while spontaneous mutations observed in this mutator cell line are single-nucleotide insertions, transversions, and A.T-->G.C transitions. In vitro assay has demonstrated that the MT1 line is in fact deficient in strand-specific correction of all eight base-base mispairs. This defect, which is manifest at or prior to the excision stage of the reaction, is due to simple deficiency of a required activity because MT1 nuclear extracts can be complemented by a partially purified HeLa fraction to restore in vitro repair. These findings substantiate the idea that strand-specific mismatch repair contributes to alkylation-induced cytotoxicity and imply that this process serves as a barrier to spontaneous transition, transversion, and insertion/deletion mutations in mammalian cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Alkylation
  • B-Lymphocytes / physiology*
  • Cell Line
  • Cell Nucleus
  • DNA Repair / genetics*
  • HeLa Cells
  • Humans
  • Hypoxanthine Phosphoribosyltransferase / genetics*
  • Mutagenesis / genetics*
  • Mutation

Substances

  • Hypoxanthine Phosphoribosyltransferase