Mapping nucleotide sequences onto a "DNA walk" produces a novel representation of DNA that can then be studied quantitatively using techniques derived from fractal landscape analysis. We used this method to analyze 11 complete genomic and cDNA myosin heavy chain (MHC) sequences belonging to 8 different species. Our analysis suggests an increase in fractal complexity for MHC genes with evolution with vertebrate > invertebrate > yeast. The increase in complexity is measured by the presence of long-range power-law correlations, which are quantified by the scaling exponent alpha. We develop a simple iterative model, based on known properties of polymeric sequences, that generates long-range nucleotide correlations from an initially noncorrelated coding region. This new model-as well as the DNA walk analysis-both support the intron-late theory of gene evolution.