Background: The organs of laboratory mice used in radioimmunotherapy experiments are relatively small compared to the ranges of high-energy yttrium-90 (Y-90) beta particles. Current Medical Internal Radiation Dose (MIRD) dosimetry methods do not account for beta energy that escapes an organ. A dosimetry model was developed to provide more realistic dose estimates for organs in mice who received Y-90-labeled antibodies by accounting for physical and geometric factors, loss of beta dose due to small organ sizes, and cross-organ doses.
Methods: The dimensions, masses, surface areas, and overlapping areas of different organs of 10 athymic nude mice, each weighing approximately 25 g, were measured to form a realistic geometric model. Major organs in this model include the liver, spleen, kidneys, lungs, heart, stomach, small intestine, large intestine, thyroid, pancreas, bone, marrow, and carcass. A subcutaneous tumor mass also was included in the model. By accounting for small organ absorbed fractions and cross-organ beta doses, the MIRD methodology was extended from humans to mice for beta dose calculations.
Results: Absorbed fractions of beta energy were calculated using the Berger's point kernels and the electron transport code EGS4. Except for the tumor and carcass, the self-organ absorbed fractions ranged from 15% to 20% in smaller organs (the marrow and thyroid) to 65%-70% in larger organs (the liver and small intestine). Cross-organ absorbed fractions also were calculated from estimates of the overlapping surface areas between organs.
Conclusion: The mathematic mouse model presented here provides more realistic organ dosimetry of radiolabeled monoclonal antibodies in the nude mouse, which should, in turn, contribute to a better understanding of the correlation of biodistribution study results and organ-tumor toxicity information.