Tumor stroma is a specialized form of tissue that is associated with epithelial neoplasms. Recent evidence indicates that significant changes in proteoglycan content occur in the tumor stroma and that these alterations could support tumor progression and invasion as well as tumor growth. Our main hypothesis is that the generation of tumor stroma is under direct control of the neoplastic cells and that, via a feedback loop, altered proteoglycan gene expression would influence the behavior of tumor cells. In this review, we will focus primarily on the work from our laboratory related to the altered expression of chondroitin sulfate proteoglycan and its role in tumor development and progression. The connective tissue stroma of human colon cancer is enriched in chondroitin sulfate and the stromal cell elements, primarily colon fibroblasts and smooth muscle cells, are responsible for this biosynthetic increase. These changes can be reproduced in vitro by using either tumor metabolites or co-cultures of human colon carcinoma cells and colon mesenchymal cells. The levels of decorin, a leucine-rich proteoglycan involved in the regulation of matrix assembly and cell proliferation, are markedly elevated in the stroma of colon carcinoma. These changes correlate with a marked increase in decorin mRNA levels and a concurrent hypomethylation of decorin gene, a DNA alteration associated with enhanced gene expression. Elucidation of decorin gene structure has revealed an unexpected degree of complexity in the 5' untranslated region of the gene with two leader exons that are alternatively spliced to the second coding exon. Furthermore, a transforming growth factor beta (TGF-beta)-negative element is present in the promotor region of decorin gene.(ABSTRACT TRUNCATED AT 250 WORDS)