The attempts at identifying precise replication origins (ori) in mammalian DNA have been pursued mainly through physico-chemical and biochemical approaches, in view of the essential failure of the search for autonomously replicating sequences in cultured cells. These approaches involve the mapping of short stretches of nascent DNA, the identification of the regions where either leading or lagging strands switch polarity, or the localization of replication intermediates by two-dimensional gel electrophoresis. Due to the complexity of animal cell genomes, most of these studies have been performed on amplified domains and with the use of synchronization procedures. The results obtained have been controversial. In order to avoid the use of experimental procedures potentially affecting the physiological mechanism of DNA replication, we have developed a method for the localization of ori in single-copy loci in exponentially growing cells. This method entails the absolute quantification of the abundance of selected DNA fragments along a genomic region within samples of newly synthesized DNA by competitive polymerase chain reaction (PCR); the latter is immune to all the uncontrollable variables which severely affect the reproducibility of conventional PCR. The application of this method to SV40 ori-driven plasmid replication precisely identifies the known ori localization. Using the same approach, we have mapped an ori for bi-directional DNA replication in a 13.7-kb locus of human chromosome 19 encoding lamin B2.