The protein products of the Tap (Transporter associated with antigen processing) 1 and 2 genes are presumed to deliver peptides across the endoplasmic reticulum (ER) for assembly with major histocompatibility complex (MHC) class I molecules. The antigen processing-defective cell line RMA-S (H-2b) has a premature stop in the Tap 2 gene and probably therefore fails to deliver peptides into the ER, which leads to a low level of cell surface MHC class I molecules. Transfection of a Tap 2 gene restores to RMA-S both MHC class I molecule expression and the ability to present influenza viral antigens. We investigated the ability of RMA-S cells transfected with a Tap 2 gene to process and present alloantigens, Sendai and Rauscher viral antigens to allogeneic and virus-specific cytotoxic T lymphocytes. We found that allogeneic peptides as well as Rauscher and Sendai viral peptides can be processed and presented by RMA-S but at reduced levels. Transfection of a Tap 2 gene of mouse (BALB/c, H-2d) or rat origin into RMA-S increased the presentation of Sendai viral antigens and partially restored the presentation of allogeneic antigens. The already low level of Rauscher viral peptides presented by RMA-S is not elevated by transfection of either Tap 2 gene into RMA-S. This indicates a differential effect of transfection of a Tap 2 gene of rat or allogeneic mouse origin into RMA-S on viral antigen processing.