1. Gap junction channels interconnect cells of the pacemaking, conduction and contraction elements of the heart and also endothelial and smooth muscle cells of vasculature, thereby providing pathways for electrotonic current spread and for second messenger diffusion. The major gap junction protein in the cardiovascular system is connexin43. 2. When human connexin43 is stably expressed in pairs of a communication-deficient cell line (SKHep1) channels are produced with unitary conductance (gamma j), lipophile sensitivity and voltage-dependent gating similar to those of mammalian systems in which connexin43 is endogenously expressed. 3. At moderate transjunctional voltages (Vj), two gamma j values dominated the recordings, about 60 and 90 pS with CsCl patch solution. The smaller channel size is favored by phosphorylating treatments and the larger channel, by dephosphorylating treatments. 4. Human connexin43 mutants truncated at the carboxy termini display a change in gamma j while a point mutation in the third transmembrane spanning domain appears to change channel selectivity. 5. Voltage dependence of the human connexin43 channel is marked at Vjs, above +/- 50 mV, but large residual conductance remains (due probably to a voltage-insensitive substate) even at the largest Vj values; kinetic but not steady-state behavior is affected by phosphorylation state.